Simulating Electron Cooling Physics with VORPAL – Status, Current Plans & Future Developments

David Bruhwiler¹, Richard Busby¹, Dan Abell¹, Peter Messmer¹, Peter Stoltz¹, John Cary^{1,2}, Alexei Fedotov³, Ilan Ben-Zvi³, Vladimir Litvinenko³, Alexey Burov⁴

- 1. Tech-X Corporation
- 2. University of Colorado
- 3. Brookhaven National Laboratory
- 4. Fermi National Accelerator Lab

Electron Cooling Dynamics working meeting December 15-16, 2003 Brookhayan National Lab

Tech-X Corporation

5541 Central Ave., Suite 135 Boulder, Colorado 80301 http://www.techxhome.com

Work at Tech-X supported by US DOE: through the SBIR program, contract # DE-FG03-01ER83313

Outline

• Status of the Current Phase II SBIR Project at Tech-X

Plans for the remainder of the Phase II

Ideas for future work

Motivation & Goals of Current Phase II Project

Motivation

 Support R&D at BNL to help understand and optimize potential performance of the proposed electron cooling section for RHIC

Primary goal

 Develop first-principles capability to model electron cooling physics for relativistic ions, especially for RHIC parameters

General Approach

- Follow the galactic dynamics community use direct Coulomb field solve with variable time-stepping to resolve close collisions
- Accurately calculate friction and diffusion coefficients for the ions
 - » Resolve differences in analytical calculations
 - Coulomb log >> 1; uniform e- distribution (no space charge)
 - \rightarrow Determine validity of \mathbb{Z}^2 scaling
 - » Understand the effects of beam space charge on friction
 - » Understand the effects of magnetization
 - from weak to strong; effect of field errors
 - » What happens for Coulomb log of order unity or smaller?
 - » For one set of parameters, provide table of coefficients to BetaCool, SimCool

Current Status - Overview

- Friction coefficients for electron cooling are being simulated at Tech-X and BNL using the VORPAL code
- Some caveats:
 - We are currently neglecting e-/e- interactions
 - » Not too bad, because the interaction time is short
 - » Initial work with a Poisson solver to correctly capture the e-/e-interactions and the Debye shielding has begun
 - The ion is also influenced by large-scale space charge forces
 - » Until recently, this effect was removed from the friction force that we extract from the simulation data as follows:
 - Run Au+79 ion and "anti" ion (opposite sign)
 - Average the velocity changes (space charge effects cancel out, leaving friction)
 - Recently developed approach to remove bulk space charge forces
 - » When calculating forces on any one particle, temporarily shift far away particles from top-to-bottom (or vice-versa), left-to-right, etc. so that each particle is effectively in the center of the distribution

4th-Order Predictor/Corrector Hermite Algorithm

- Algorithm developed and used extensively by galactic dynamics community
 - J. Makino, The Astrophysical Journal **369**, 200 (1991)
 - J. Makino & S.J. Aarseth, Publ. Astron. Soc. Japan 44, 141 (1992)
- The predictor step looks like this:

$$\mathbf{v}_{p,j} = \frac{1}{2} (t - t_j)^2 \dot{\mathbf{a}}_j + (t - t_j) \mathbf{a}_j + \mathbf{v}_j$$

$$\mathbf{x}_{p,j} = \frac{1}{6} (t - t_j)^3 \dot{\mathbf{a}}_j + \frac{1}{2} (t - t_j)^2 \dot{\mathbf{a}}_j + (t - t_j) \mathbf{v}_j + \mathbf{x}_j$$

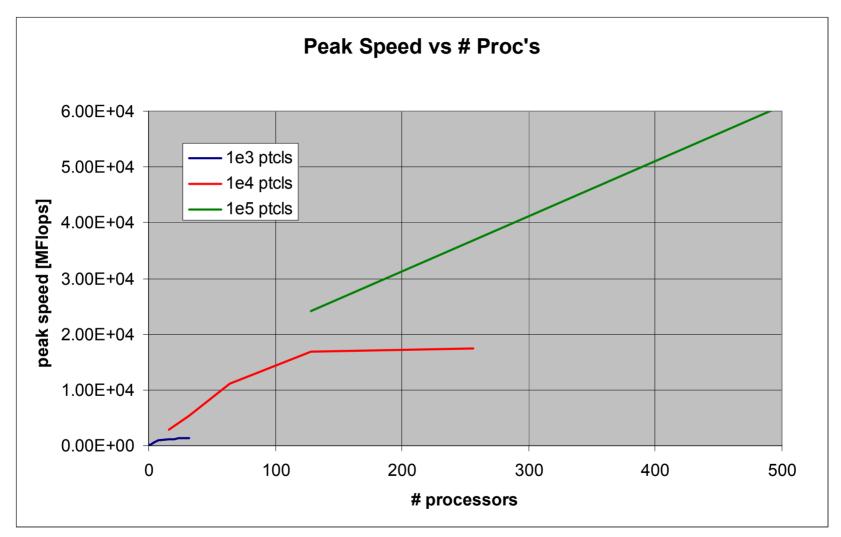
where

$$\mathbf{a}_{i} = \frac{q_{i}}{m_{i}} \mathbf{v}_{i} \times \mathbf{B} + \frac{q_{i}}{4\pi\varepsilon_{0}m_{i}} \sum_{j} \frac{q_{j}\mathbf{r}_{ij}}{\left(r_{ij}^{2} + r_{c}^{2}\right)^{3/2}} \qquad \mathbf{r}_{ij} = \mathbf{x}_{p,j} - \mathbf{x}_{p,i}$$

$$\dot{\mathbf{a}}_{i} = \frac{q_{i}}{m_{i}} \mathbf{a}_{i} \times \mathbf{B} + \frac{q_{i}}{4\pi\varepsilon_{0}m_{i}} \sum_{j} q_{j} \left[\frac{\mathbf{v}_{ij}}{\left(r_{ij}^{2} + r_{c}^{2}\right)^{3/2}} + \frac{3(\mathbf{v}_{ij} \bullet \mathbf{r}_{ij})\mathbf{r}_{ij}}{\left(r_{ij}^{2} + r_{c}^{2}\right)^{5/2}} \right] \qquad \mathbf{r}_{c} \rightarrow 0 \quad \text{``cloud'' radius}$$

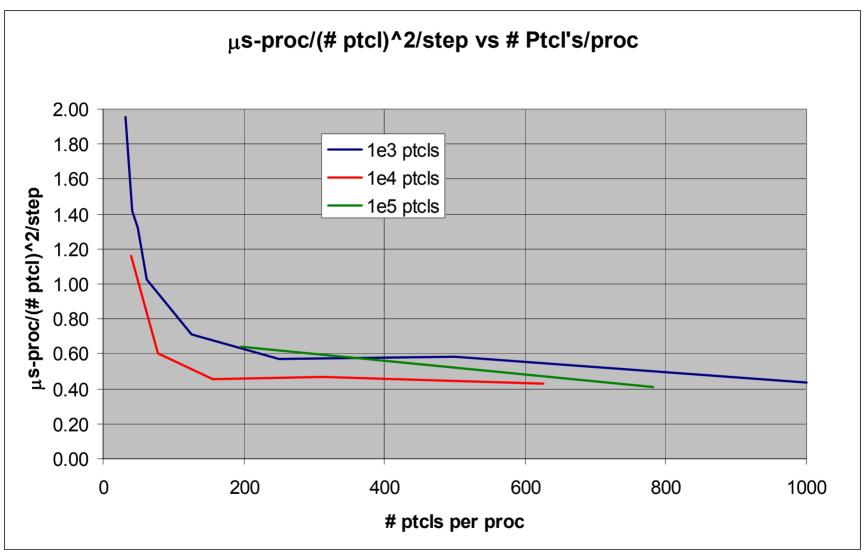
Hermite Algorithm -- continued

• The corrector step looks like this:


$$\mathbf{x}_{i}(t_{i} + \Delta t_{i}) = \mathbf{x}_{p,i} + \frac{1}{24} \Delta t_{i}^{4} \mathbf{a}_{0,i}^{(2)} + \frac{1}{120} \Delta t_{i}^{5} \mathbf{a}_{0,i}^{(3)} \qquad \mathbf{v}_{i}(t_{i} + \Delta t_{i}) = \mathbf{v}_{p,i} + \frac{1}{6} \Delta t_{i}^{3} \mathbf{a}_{0,i}^{(2)} + \frac{1}{24} \Delta t_{i}^{4} \mathbf{a}_{0,i}^{(3)}$$

where $\mathbf{a}_{0,i}^{(2)}$ and $\mathbf{a}_{0,i}^{(3)}$ are linear functions of $\mathbf{a}(t)$ and $\dot{\mathbf{a}}(t)$ evaluated at times t_i and $t_i + \Delta t_i$

- Introduction of a magnetic field breaks the 4th-order scaling, unless
 - **B**(**x**) is evaluated again at the predicted positions
 - For the magnetic term in the velocity correction (far right term above):
 - » $\mathbf{a}_{0,i}^{(3)}$ is split into self-field $\mathbf{a}_{self-field,i}^{(3)}$ and magnetic $\mathbf{a}_{magnetic,i}^{(3)}$ terms
 - » the coefficient in front of $\mathbf{a}_{magnetic i}^{(3)}$ is changed from 1/24 to 5/72
- Generalization of this algorithm from gravitating masses to ions and magnetized electrons is an important accomplishment



Good Scaling Demonstrated with up to 512 Processors

200 Particles/Processor is Required for Good Scaling

Single ion dynamics, neglecting e-/e- interactions

- Added the ability to ignore interactions between specified sets of particles
 - Yields an O(N_{ion}*N_e) algorithm (orders of magnitude faster)
 - » Rather than $O(N^2)$, where $N=N_{ion}+N_e$
 - Physically reasonable for $\tau < \omega_{pe}$
 - » Breaks down for longer interaction times or higher e- densities
 - This only works in serial, but parallel version is now underway
 - Can be used with many ions
- We have implemented the ability to include e-/e- interactions via electrostatic PIC
 - Should recover correct shielding
 - Electrostatic PIC algorithm works very well in parallel
 - Combination of Hermite algorithm with PIC is still being tested
- Use of the full $O(N^2)$ Hermite algorithm will be of interest for high-current e- beams
 - Here, e-/e- scattering can break the magnetization

Parallel Boundary Conditions for the Field Solve

- Ewald sums can be used to impose periodic BC's on a Coulomb field solve
 - Early work requires cubic 3D region with periodicity in all dim's
 » Not very useful for our problem
 - More recent work presents algorithms for periodicity along two of the dimensions, or (separate work) along just one dimension
 - » These papers must be studied more carefully
- Dan Abell derived algorithm for periodicity along 1 dim.
 - Implemented in VORPAL for 2nd-order Boris push, but not for the 4th-order Hermite algorithm
- Recently (last week), a very simple numerical scheme was implemented and seems to be working (still being tested)
 - Enables periodic BC's along 1, 2 or 3 dimensions with just a simple change to the input file

Reduced model

Assumptions

- Ions are very weakly perturbed during a single interaction
- Electron-electron collisions are not important
- Interactions of single electron with multiple ions are "additive"
- Calculate friction & diffusion coefficients as follows:
 - Choose time step to resolve gyromotion of electrons
 - Use leap-frog integrator with fixed time step:
 - » Apply magnetic force to each ion and electron
 - » Sequence of ion-electron binary collisions
 - Regarding treatment of binary collisions
 - » 2-body Coulomb problem is analytic
 - » Most of the calculations have been completed for implementing this in code
 - » Missing space charge forces could be added via PIC
- Benefits of this approach
 - Each time step is O(Ne*Nion)
 - Number of time steps is O(20*Ngyro)
 - Same as for present Hermite algorithm, but should be much faster

Plans for the remainder of the Project

- Goal is to accurately calculate friction and diffusion coefficients for Au+79 ions, with RHIC parameters
 - Accurately simulate the physics
 - Develop improved understanding of the physics
 - Produce improved coefficients for BetaCool, SimCool
- Overview of our future plans
 - Complete code development, testing and benchmarking
 - Address key physics issues
 - Make it easier to generate input files, run parameter sweeps
 - Generate relevant coefficients for BetaCool and SimCool

Code Development

- Neglect of e-/e- interactions
 - Finish parallel implementation
 - Finish development of combined PIC/Hermite
- Parallel Boundary Conditions
 - Need to decide on one or more approaches to implement & test
- Should we proceed with development of a reduced model?
- Creation of input files and running parameter sweeps
 - VORPAL parser is not very sophisticated
 - VORPAL input files allow for great generality
 - » Many opportunities for bugs in the input file
 - Python pre-parser exists now, which helps quite a bit
 - We will develop a small Python application for generating accurate input files, based on input of relevant physical/numerical param.'s
 - We will develop a small Python application that takes one input file, sweeps over a specified parameter, and invokes VORPAL

Testing and Benchmarking

- Resolve differences in analytical calculations
 - Coulomb log >> 1; uniform e- distribution (no space charge)
 - Both magnetized and unmagnetized
 - How strong is the diffusive dynamics?
- Determine validity of Z^2 scaling
- Understand the effects of beam space charge on friction
- Understand the effects of magnetization
 - from weak to strong; effect of field errors
 - » What happens for Coulomb log of order unity or smaller?
 - » For one set of parameters, provide table of coefficients to BetaCool, SimCool

